Math 304 Midterm 2

Name: \qquad

This exam has 11 questions, for a total of 100 points +10 bonus points.
Please answer each question in the space provided. You need to write full solutions. Answers without justification will not be graded. Cross out anything the grader should ignore and circle or box the final answer.

Question	Points	Score
1	12	
2	5	
3	10	
4	10	
5	15	
6	12	
7	10	
8	16	
9	10	
Total:	100	

Question	Bonus Points	Score
Bonus Question 1	5	
Bonus Question 2	5	
Total:	10	

Question 1. (12 pts)
Determine whether each of the following statements is true or false. You do NOT need to explain.
(a) Given two matrices A and B, if B is row equivalent to A, then B and A have the same rank.

Solution: True.
(b) Let v and w be two nonzero vectors in \mathbb{R}^{5}. If v and w are orthogonal to each other, then v and w are linearly independent.

Solution: True
(c) Suppose $L: V \rightarrow W$ is a linear transformation between two vector spaces V and W. Then the kernel of L is a subspace of V.

Solution: True.
(d) For any $(m \times n)$ matrix A, we have

$$
\operatorname{dim} N(A)+\operatorname{rank}(A)=n
$$

Solution: True.

Question 2. (5 pts)
Find the angle between $v=\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 2\end{array}\right)$ and $w=\left(\begin{array}{l}1 \\ 0 \\ 2 \\ 2\end{array}\right)$ in \mathbb{R}^{4}.

Solution: We denote the angle between v and w by θ.

$$
\cos \theta=\frac{\langle v, w\rangle}{\|v\|\|w\|}=\frac{2}{\sqrt{5}}
$$

So

$$
\theta=\arccos \left(\frac{2}{\sqrt{5}}\right)
$$

Question 3. (10 pts)
Let V be the subspace of \mathbb{R}^{3} spanned by $v=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ and $w=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$. Describe V^{\perp} by finding a basis of V^{\perp}.

Solution: V^{\perp} consists of vectors (a, b, c) which satisfy the following conditions.

$$
\left\{\begin{array}{l}
(1,0,0) \cdot(a, b, c)=0 \\
(1,1,0) \cdot(a, b, c)=0
\end{array}\right.
$$

That is,

$$
\left\{\begin{array}{l}
a=0 \\
a+b=0
\end{array}\right.
$$

So we have

$$
\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=s\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

It follows that

$$
\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

forms a basis of V^{\perp}.

Question 4. (10 pts)
Suppose a plane H passes through the point $(1,1,0)$ and is orthogonal to the line

$$
L: x=2 t+1, y=4 t-2, z=t+5 .
$$

Find the equation of H.

Solution: $n=(2,4,1)$ is a normal vector of H. So the equation of H is

$$
2 x+4 y+z=d
$$

Plug the point $(1,1,0)$ into the equation to solve for d. We get

$$
2 x+4 y+z=6
$$

Question 5. (15 pts)
Given

$$
A=\left[\begin{array}{rrr}
1 & 0 & 2 \\
0 & 1 & -3 \\
3 & 4 & -6
\end{array}\right]
$$

(a) Find a basis of $\operatorname{Ker}(A)$.

Solution: First, use elementary row operations to get a row echelon form of A.

$$
\left[\begin{array}{rrr}
1 & 0 & 2 \\
0 & 1 & -3 \\
0 & 0 & 0
\end{array}\right]
$$

So all elements in $\operatorname{Ker} A$ are of the form

$$
t\left[\begin{array}{r}
-2 \\
3 \\
1
\end{array}\right]
$$

So

$$
v=\left[\begin{array}{r}
-2 \\
3 \\
1
\end{array}\right]
$$

forms a basis of the kernel.
(b) Find a basis of the row space of A.

Solution: The two nonzero rows in the row echelon form of A form a basis of the row space of A. That is

$$
\begin{gathered}
u_{1}=(1,0,2) \\
u_{2}=(0,1,-3)
\end{gathered}
$$

form a basis of the row space of A.
(c) Find a basis of the range of A.

Solution: Note that the range of A is the same as the column space of A. Use the row echelon from the part (a), we see that the 1 st and 2 nd columns of A form a basis of the range of A. That is,

$$
w_{1}=\left[\begin{array}{l}
1 \\
0 \\
3
\end{array}\right], w_{2}=\left[\begin{array}{l}
0 \\
1 \\
4
\end{array}\right]
$$

form a basis of the range of A.
(d) Determine the rank of A.

Solution: The rank of A is the dimension of the row space. So the rank of A is 2 . (In fact, we know that the rank of A is also the same as the dimension of the column space of A.)

Question 6. (12 pts)
Determine whether the following mappings are linear transformations.
(a) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{1}$ by

$$
T\binom{x_{1}}{x_{2}}=x_{1}+x_{2}+1
$$

Solution: T is not a linear transformation. For example,

$$
T\left(\binom{1}{0}+\binom{0}{1}\right)=3
$$

on the other hand,

$$
T\binom{1}{0}+T\binom{0}{1}=2+2=4
$$

So

$$
T\left(\binom{1}{0}+\binom{0}{1}\right) \neq T\binom{1}{0}+T\binom{0}{1}
$$

(b) Let $M_{n \times n}(\mathbb{R})$ be the vector space of all $(n \times n)$ matrices. Let us fix an $(n \times n)$ matrix A and define a mapping $L: M_{n \times n}(\mathbb{R}) \rightarrow M_{n \times n}(\mathbb{R})$ by

$$
L(B)=A B
$$

That is, for any $(n \times n)$ matrix B, the mapping L maps it to the product of A and B.

Solution: Suppose $B_{1}, B_{2} \in M_{n \times n}(\mathbb{R})$ and $\alpha, \beta \in \mathbb{R}$.

$$
\begin{aligned}
L\left(\alpha B_{1}+\beta B_{2}\right) & =A\left(\alpha B_{1}+\beta B_{2}\right)=\alpha A B_{1}+\beta A B_{2} \\
& =\alpha L\left(B_{1}\right)+\beta L\left(B_{2}\right)
\end{aligned}
$$

So L is a linear transformation.

Question 7. (10 pts)
Let $M_{2}(\mathbb{R})$ be the vector space of all (2×2) matrices with real coefficients. The set

$$
S=\left\{\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
2 & 0
\end{array}\right),\left(\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right)\right\}
$$

is a basis of $M_{2}(\mathbb{R})$. Find the coordinates of $A=\left(\begin{array}{ll}5 & 3 \\ 3 & 1\end{array}\right)$ with respect to the basis S.

Solution: We need to write

$$
\left(\begin{array}{ll}
5 & 3 \\
3 & 1
\end{array}\right)=a\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)+b\left(\begin{array}{ll}
1 & 1 \\
2 & 0
\end{array}\right)+c\left(\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right)+d\left(\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right) .
$$

That is, we need to solve the linear system

$$
\left\{\begin{array}{l}
a+b+c+2 d=5 \\
a+b+2 c=3 \\
a+2 b=3 \\
a=1
\end{array}\right.
$$

Simply use back substitution. We have

$$
a=1, b=1, c=1 / 2, d=5 / 4
$$

So

$$
[A]_{S}=\left[\begin{array}{c}
1 \\
1 \\
1 / 2 \\
5 / 4
\end{array}\right]
$$

Question 8. (16 pts)
Let $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be the linear transformation given by

$$
L\binom{x_{1}}{x_{2}}=\left(\begin{array}{c}
x_{1}+x_{2} \\
x_{1}-x_{2} \\
2 x_{2}
\end{array}\right)
$$

(a) Find the matrix representation of L with respect to the standard bases of \mathbb{R}^{2} and \mathbb{R}^{3}.

Solution:

$$
L\left(e_{1}\right)=L\binom{1}{0}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right), L\left(e_{2}\right)=L\binom{0}{1}=\left(\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right)
$$

So the matrix representation of L with respect to the standard bases of \mathbb{R}^{2} and \mathbb{R}^{3} is

$$
\left(\begin{array}{rr}
1 & 1 \\
1 & -1 \\
0 & 2
\end{array}\right)
$$

(b) Let $u_{1}=\binom{1}{0}$ and $u_{2}=\binom{1}{1}$. Moreover, let $v_{1}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right), v_{2}=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$ and $v_{3}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$.

Find the matrix representation of L with respect to the basis $\left\{u_{1}, u_{2}\right\}$ of \mathbb{R}^{2} and the basis $\left\{v_{1}, v_{2}, v_{3}\right\}$ of \mathbb{R}^{3}.

Solution:

$$
L\left(u_{1}\right)=L\binom{1}{0}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right) \quad \text { and } \quad L\left(u_{2}\right)=L\binom{1}{1}=\left(\begin{array}{l}
2 \\
0 \\
2
\end{array}\right)
$$

Now we need to find the coordinate vectors of $L\left(u_{1}\right)$ nad $L\left(u_{2}\right)$ with respect to the basis $B=\left\{v_{1}, v_{2}, v_{3}\right\}$ of \mathbb{R}^{3}.

$$
L\left(u_{1}\right)=a v_{1}+b v_{2}+c v_{3}
$$

Solve for a, b, c, and we get $\left[L\left(u_{1}\right)\right]_{B}=\left(\begin{array}{l}a \\ b \\ c\end{array}\right)=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$. Similarly, we obtain

$$
\left[L\left(u_{2}\right)\right]_{B}=\left(\begin{array}{c}
2 \\
-2 \\
2
\end{array}\right)
$$

So the matrix representation of L in this case is

$$
\left(\begin{array}{rr}
0 & 2 \\
1 & -2 \\
0 & 2
\end{array}\right)
$$

Question 9. (10 pts)
Let $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation. Its matrix representation with respect to the standard basis of \mathbb{R}^{2} is

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right) .
$$

(a) Find the transition matrix from the basis $\left\{u_{1}, u_{2}\right\}$ to the standard basis $\left\{e_{1}, e_{2}\right\}$, where

$$
u_{1}=\binom{1}{0}, u_{2}=\binom{1}{1}
$$

Solution: The transition matrix is

$$
U=\left(\begin{array}{cc}
\mid & \mid \\
u_{1} & u_{2} \\
\mid & \mid
\end{array}\right)=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

(b) Find the matrix representation of L with respect to $\left\{u_{1}, u_{2}\right\}$.

Solution: The matrix representation of L with respect to $\left\{u_{1}, u_{2}\right\}$ is

$$
U^{-1}\left(\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right) U
$$

where U is the matrix from part (a). In this case, an easy way to find U^{-1} is

$$
U^{-1}=\frac{1}{\operatorname{det} U}\left(\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right)=\left(\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right)
$$

So

$$
U^{-1}\left(\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right) U=\left(\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right)
$$

Bonus Question 1. (5 pts)
Recall that $S=\left\{1, t, t^{2}\right\}$ is a basis of $\mathbb{P}_{2}(t)$. Let $F: \mathbb{P}_{2}(t) \rightarrow \mathbb{P}_{2}(t)$ be the linear transformation defined by

$$
F(1)=1+2 t+t^{2}, F(t)=2+t+t^{2} \text { and } F\left(t^{2}\right)=-1+t
$$

(a) Write down the matrix representation of F relative to the basis $S=\left\{1, t, t^{2}\right\}$.

Solution:

$$
[F]_{S}=\left[\begin{array}{ccc}
1 & 2 & -1 \\
2 & 1 & 1 \\
1 & 1 & 0
\end{array}\right]
$$

(b) Find the kernel of F.

Solution: First reduce the matrix $[F]_{S}$ in part (a) to its echelon form, which is

$$
\left[\begin{array}{ccc}
1 & 1 & 0 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right]
$$

So $\operatorname{Ker} F=\operatorname{span}\left\{\left[\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right]\right\}$. In other words, $\operatorname{Ker} F$ is spanned of one polynomial $-1+t+t^{2}$.
(c) Find the dimension of the range of F.

Solution:

$$
\operatorname{dim}(\operatorname{Im} F)+\operatorname{dim}(\operatorname{Ker} F)=3
$$

From part (b), we know that $\operatorname{dim}(\operatorname{Ker} F)=1$. So $\operatorname{dim}(\operatorname{Im} F)=2$.

Bonus Question 2. (5 pts)

Given an $(n \times n)$ matrix $A=\left(a_{i j}\right)$, we define its trace, denoted by $\operatorname{Tr}(A)$, to be

$$
\operatorname{Tr}(A)=\sum_{i=1}^{n} a_{i i}=a_{11}+a_{22}+\cdots+a_{n n}
$$

(a) It is a fact that for any two $(n \times n)$ matrices A and B, we have

$$
\operatorname{Tr}(A B)=\operatorname{Tr}(B A)
$$

Give a proof of this fact in the case when $n=3$. That is, prove that for any two (3×3) matrices A and B, we have $\operatorname{Tr}(A B)=\operatorname{Tr}(B A)$.

Solution: This is done by a direct computation. Let us write $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$. Then (i, j) entry of $A B$ is

$$
\sum_{k=1}^{3} a_{i k} b_{k j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+a_{i 3} b_{3 j}
$$

and the (i, j) entry of $B A$ is

$$
\sum_{k=1}^{3} b_{i k} a_{k j}=b_{i 1} a_{1 j}+b_{i 2} a_{2 j}+b_{i 3} a_{3 j}
$$

Now

$$
\begin{aligned}
\operatorname{Tr}(A B) & =\sum_{k=1}^{3} a_{1 k} b_{k 1}+\sum_{k=1}^{3} a_{2 k} b_{k 2}+\sum_{k=1}^{3} a_{3 k} b_{k 3} \\
& =\sum_{k=1}^{3} b_{k 1} a_{1 k}+\sum_{k=1}^{3} b_{k 2} a_{2 k}+\sum_{k=1}^{3} b_{k 3} a_{3 k} \\
& \text { regroup terms } \\
& =\sum_{\ell=1}^{3} b_{1 \ell} a_{\ell 1}+\sum_{\ell=1}^{3} b_{2 \ell} a_{\ell 2}+\sum_{\ell=1}^{3} b_{3 \ell} a_{\ell 3}=\operatorname{Tr}(B A)
\end{aligned}
$$

(b) Now use the fact from part (a) to show that if A and B are similar, then

$$
\operatorname{Tr}(A)=\operatorname{Tr}(B)
$$

Solution: If A and B are similar, then there exist S such that $A=S^{-1} B S$.

$$
\operatorname{Tr}(A)=\operatorname{Tr}\left(S^{-1} B S\right)=\operatorname{Tr}\left(\left(S^{-1} B\right) S\right)=\operatorname{Tr}\left(S\left(S^{-1} B\right)\right)=\operatorname{Tr}\left(S^{-1} S B\right)=\operatorname{Tr}(B)
$$

